WHAT IS KNOWN?
- Flexible electronic/optoelectronic systems that can physically interface with soft biological tissue surfaces offer revolutionary diagnostic and therapeutic capabilities for various diseases.
- However, current approaches to coupling the tissue-device interfaces either through surgical sutures, staples, cuffs, etc., damage the tissue and the devices and often result in adverse immune responses and mechanical instabilities.
WHAT DOES THIS STUDY ADD?
- We introduce a functional adhesive bioelectronic-tissue interface material (BTIM), which is mechanically compliant, electrically conductive, and optically transparent. The material can bond to the surface of tissue and the device and provide stable adhesion for several days to months.
- We demonstrate the capabilities of this material in live animal models that includes device applications ranging from battery-free optoelectronic systems for deep-brain optogenetics to wireless millimeter-scale pacemakers and flexible multi electrode epicardial arrays.
LINK TO THE ARTICLE
Yang Q, Wei T, Yin RT, Wu M, Xu Y, Koo J, Choi YS, Xie Z, Chen SW, Kandela I, Yao S, Deng Y, Avila R, Liu TL, Bai W, Yang Y, Han M, Zhang Q, Haney CR, Benjamin Lee K, Aras K, Wang T, Seo MH, Luan H, Lee SM, Brikha A, Ghoreishi-Haack N, Tran L, Stepien I, Aird F, Waters EA, Yu X, Banks A, Trachiotis GD, Torkelson JM, Huang Y, Kozorovitskiy Y, Efimov IR, Rogers JA. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat Mater. 2021 Jul 29;. doi: 10.1038/s41563-021-01051-x. [Epub ahead of print] PubMed PMID: 34326506.